Muscarinic activation of Ca2+/calmodulin-dependent protein kinase II in pancreatic islets. Temporal dissociation of kinase activation and insulin secretion.

نویسندگان

  • E L Babb
  • J Tarpley
  • M Landt
  • R A Easom
چکیده

We have demonstrated previously that glucose activates the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in isolated rat pancreatic islets in a manner consistent with a role of this enzyme in the regulation of insulin secretion [Wenham, Landt and Easom (1994) J. Biol. Chem. 269, 4947-4952]. In the current study, the muscarinic agonist, carbachol, has been shown to induce the conversion of CaM kinase II into a Ca(2+)-independent, autonomous form indicative of its activation. Maximal activation (2-fold) was achieved by 15 s, followed by a rapid return to basal levels by 1 min. This response was primarily the result of the mobilization of Ca2+ from intracellular stores since it was not affected by a concentration (20 microM) of verapamil that completely prevented the activation of CaM kinase II by glucose. Surprisingly, carbachol added prior to, or simultaneously with, glucose attenuated nutrient activation of CaM kinase II. This effect was mimicked by cholecystokinin-8 (CCK-8) and thapsigargin, suggesting its mediation by phospholipase C and the mobilization of intracellular Ca2+. In contrast, carbachol, CCK-8 and thapsigargin markedly potentiated glucose (12 mM)-induced insulin secretion. These results suggest that CaM kinase II activation can be temporally dissociated from insulin secretion but do not exclude the potential dependence of insulin exocytosis on CaM kinase II-mediated protein phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Correlation of Ca2+-and calmodulin-dependent protein kinase activity with secretion of insulin from islets of Langerhans.

A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands ...

متن کامل

Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase II in insulinoma MIN6 cells.

Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) may play a key role in Ca2+-induced insulin secretion. We have previously reported that treatment of insulinoma MIN6 cells with secretagogues activated CaM kinase II and increased the phosphorylation of synapsin I, followed by insulin secretion. Here, we identified isoforms of CaM kinase II in MIN6 cells and rat islets. Immunoblot anal...

متن کامل

Calcium-stimulated phosphorylation of MAP-2 in pancreatic betaTC3-cells is mediated by Ca2+/calmodulin-dependent kinase II.

An understanding of the role of CaM kinase II in the pancreatic beta-cell is dependent on the identification of its cellular targets. One of the best substrates of CaM kinase II in vitro that could function in secretory events is the microtubule-associated protein, MAP-2. By immunoblot analysis, a high molecular weight protein with electrophoretic properties characteristic of MAP-2, was identif...

متن کامل

Nutrient stimulation results in a rapid Ca2+-dependent threonine phosphorylation of myosin heavy chain in rat pancreatic islets and RINm5F cells.

Activation of protein kinases plays an important role in the Ca2+-dependent stimulation of insulin secretion by nutrients. The aim of the present study was to identify kinase substrates with the potential to regulate secretion because these have been poorly defined. Nutrient stimulation of the rat insulinoma RINm5F cell line and rat pancreatic islets resulted in an increase in the threonine pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 317 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996